
ISSN 0005-1179 (print), ISSN 1608-3032 (online), Automation and Remote Control, 2025, Vol. 86, No. 6, pp. 577–588.
c© The Author(s), 2025 published by Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, 2025.
Russian Text c© The Author(s), 2025, published in Avtomatika i Telemekhanika, 2025, No. 6, pp. 102–117.

CONTROL IN SOCIAL ECONOMIC SYSTEMS

Informational Control of Strategies

in an n-Player Oligopoly Game

with Reflexive Behavior

M. I. Geraskin
Samara University, Samara, Russia

e-mail: innovation@ssau.ru

Received November 29, 2024

Revised March 21, 2025

Accepted March 25, 2025

Abstract—This paper is devoted to an n-player oligopoly game with quantity competition under
general demand and cost functions. Players are assumed to be reflexive: each player conjectures
about the strategies of all other players. As a result, the subsets of players with different
Stackelberg leadership levels are formed in this game (a game with multilevel leadership). The
reflexion of players is formalized by conjectural variations, i.e., players’ expectations regarding
the impact of their actions on the counterparty’s action. The problem of controlling the strategy
of one player (the controlled player) by the other (n− 1) players (the Principal) is investigated,
and an optimal Nash equilibrium is established in terms of the Principal’s utility criterion.
A hierarchical game model of players’ interactions is proposed, and the dependence of the
maximum of the Principal’s utility function on the vector of the sums of conjectural variations
(SCV) of all players is found within this model. The dependence is used to calculate the
controlled player’s SCV value optimizing the Principal’s utility function. An informational
control method is developed, enabling the Principal to induce the controlled player to choose
the reaction function optimal from the former’s standpoint.
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1. INTRODUCTION

The oligopoly game is an aggregative game [1], i.e., one where each player’s payoff depends on
the sum (aggregate) of the actions of all players. The solution of this game is the Cournot–Nash
equilibrium [2, 3]. Based on a conjectural variation, H. Stackelberg was the first to define the
leader’s strategy in the game as opposed to the follower’s strategy [4].

The prerequisite for the concept of a conjectural variation in an aggregative game was the
comprehension that, when choosing their optimal actions, players will inevitably expect the optimal
behavior of their rivals (i.e., they will perform reflexion). Consequently, the conjectural variation
is a mathematical formalization of the mental process of reflexion [5], in this case being interpreted
as a thought operation executed by some player to calculate the optimal reaction (best response)
of another player to the former’s action. As a rule, a quantity conjectural variation is considered,
which characterizes the player’s expected reciprocal change in the counterparty’s action (supply
quantity), optimizing the latter’s utility function under the action chosen by the former. In modern
research, the conjectural variation is widely used to analyze Stackelberg leadership in two directions
as follows. First, an increase in the number of reflexive players leads to the emergence of multiple
Stackelberg leaders in the game [6]. Second, deeper reflexion causes the emergence of higher-level
leaders (multilevel leadership) [7]. The second aspect is expressed in the hierarchy of players’
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conjectures, bringing to the following hierarchy of their mental types: 1) a follower, who makes no
conjectures regarding the strategies of the environment (its conjectural variation is therefore zero);
2) a (first-level) Stackelberg leader, who expects followers in the environment; 3) a second-level
(or higher-level) Stackelberg leader, who expects first-level (or other lower-level) Stackelberg leaders
in the environment. The hierarchy of mental types determines the reflexion rank of player r as the
number in the described sequence of mental types. Note that the above hierarchy is constructed
only in the players’ beliefs (in this case, we have a game with phantom players); in fact, however,
there is a nonhierarchical game with equal players, investigated in most studies of the oligopoly
problem. As an exception, a hierarchical aggregative game with Principal’s control was considered
in [8] as an incentive problem with players (universities) institutionally dependent on the Principal
(the government).

Given the above stratification of leaders, depending on the awareness of each player, players of
different mental types can coexist in an oligopoly game, and a player of a definite mental type will
choose a predictable action according to its conjectural variation. Therefore, it becomes possible
to change, in a purposeful way, some player’s action by forming a definite information field for
him/her. This possibility leads to the well-known concept of informational control. The idea of
informational control [9–11] is based on the formation of a purposeful sequence of opinions in a social
group depending on the opinions of the so-called influence agents. Formally speaking, informational
control is intended to induce purposefully the desired way of thinking, set by a control authority,
for one or several players.

In the context of oligopoly games, the concept of informational control is constructed as follows.
Consider a group consisting of n− 1 players, further denoted by the symbol j. Let this group strive
to achieve a favorable action of a non-group player i. To do so, the group performs actions from
which player i concludes on some reflexion rank r of the group. Therefore, for player i, the optimal
reflexion rank is r + 1, which corresponds to definite values of its conjectural variations; in turn,
they predetermine the desired action of this player for the group. For a particular realization of
such a control process, it is necessary to find the sum of conjectural variations (SCV) of player i
that are optimal (consistent) from the group’s standpoint and then determine the dependences of
the equilibrium actions of all players on the parameters of their mental type.

In this paper, we consider a procedure for calculating the optimal SCV value of a certain player
in terms of the environment’s utility criterion, a method for estimating the player’s mental type
corresponding to this SCV value or its reaction function, and an algorithm for calculating the
group’s actions inducing the required player’s response.

2. THE BASIC OLIGOPOLY GAME MODEL

The game-theoretic model describes the interactions of n players representing firms in an oligopoly
market. By a traditional assumption [6], these firms offer an identical product to the market with
a common decreasing inverse demand function; in the case of quantity competition, they choose
actions in the form of supply quantities. Players are rational, i.e., maximize individual action-
concave utility functions πi(Q,Qi) = P (Q)Qi − Ci(Qi); in addition, they are informed about the
utility functions of the environment and choose their actions simultaneously, once, and indepen-
dently. Then the basic model of player’s action choice is described by

max
Qi�0

πi(Q,Qi) = max
Qi�0

[P (Q)Qi − Ci(Qi)] , i ∈ N = {1, . . . , n}, (1)

Q =
∑
i∈N

Qi, (2)
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where Qi and πi denote the action and utility function of player i; Q is the aggregate of actions
(the total action of all players); N stands for the set of players; n is the number of players; P (Q)
is the inverse demand function, P ′

Q < 0; finally, Ci(Qi) is the cost function of player i, C ′
Qi

> 0.

For a known vector of conjectural variations, the Nash equilibrium in the game Γ= 〈N,{Qi, i∈N},
{πi, i ∈ N}〉 is determined by solving the following system of reaction equations:

∂πi(Q
∗
i , ρij)

∂Qi
= 0, i, j ∈ N, (3)

where ρij = Q′
jQi

is the quantity conjectural variation of player i, i.e., its expectation regarding
the supply quantity change of player j in response to the unit increase in the supply quantity of
player i; Q∗

i is the equilibrium value.

The optimal conjectural variation (also called consistent in the literature) is calculated from
equation (3) of player j, i.e., this variation corresponds to its best response. For the utility func-
tion (1), system (3) takes the form

P (Q) + (1 + Sr
i )QiP

′
Q − C ′

iQi
= 0, i ∈ N, Sr

i =
∑

j∈N\i
ρrij , (4)

where Sr
i is the SCV value of player i at a reflexion rank r.

In the case of action-independent conjectural variations (ρ′ijQi
= 0), SCV values at an arbitrary

reflexion rank are given by the recurrent formula [7]

Sr
i =

⎛⎜⎜⎜⎝ 1∑
j∈N\i

1

uj − Sr−1
j + 1

− 1

⎞⎟⎟⎟⎠
−1

, (5)

where ui = −1 +
P ′
Qi

+(1+Sr−1
i )QiP

′′
QQi

−C′′
iQiQi

|P ′
Q
|

is a nonlinearity coefficient expressing the influence of

the nonlinearity of the demand and cost functions on the unimodality of the utility function of
player i.

Due to (4), the Nash equilibrium vector Q∗ = {Q∗
i , i ∈ N} in the n-player oligopoly game de-

pends on the SCV vector Sr = {Sr
i , i ∈ N} (the conjectural variations of all players). Therefore,

an inverse dependence also exists: given a known action vector Q∗ = {Q∗
i , i ∈ N}, it is possible

to establish a vector Sr = {Sr
i , i ∈ N} inducing these actions of the players. On this basis, let us

consider some tools for controlling (manipulating) the player’s behavior by the environment.

3. AN OPTIMAL CONTROL MODEL FOR PLAYER’S BEHAVIOR

Consider the following modification of the basic oligopoly game model in the form of a hierarchi-
cal game. Player i is the controlled object, and its environment (i.e., the other players) acts as the
control subject, also called the Principal. Thus, we study a hierarchical game of the Principal–agent
type (Fig. 1). For the sake of simplicity, the environment of player i will be assigned number j (i.e.,
j = {N\i}). The environment has a common goal: induce player i to choose an optimal action Qi

in terms of the former’s utility functions. Therefore, let us define the Principal’s goal function as
the vector of the utility functions of the environment players. Since the latter are supposed to be
identical, the goal function can be represented as a single function of the form

π(i) = πj, j ∈ {1, . . . , i− 1, i+ 1, . . . , n},

and briefly written as
π = π(i).
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Fig. 1. The diagram of a hierarchical game.

Now we describe the main assumptions adopted in the hierarchical game analysis.

1) The utility functions of all environment players are identical, i.e., these players have the same
cost functions with the same coefficient:

Cj(Qj) = Ck(Qk), πj(Qj) = πk(Qk)∀j, k = {N\i}.

2) The awareness of the players is described by the following awareness sets Ii and Ij :

— The awareness set of the controlled player includes the set of players and the actions and
utility functions of all players:

Ii = {N,Qk, πk, k ∈ N}.

— The awareness set of the environment encompasses the set of players, the actions and utility
functions of all players, the SCV values of the environment players, and the Principal’s goal function:

Ij = {N,Qk, πk, Sj , π, j ∈ N\i, k ∈ N},

where π = πj, j ∈ N\i, is the goal function of the environment (Principal), identical to the utility
functions of the environment players.

3) All players calculate their conjectural variations based on the sets Ii and Ij . These variations
may be optimal (i.e., consistent with the utility functions of the players) or be determined by the
players using the actions of the other players. If players’ actions are inconsistent with their utility
functions, the players are action-oriented. At each time instant of the game, either the SCV of the
controlled player or the SCV of the environment has a constant value:

Si = const ∨ Sj = const,

since to change the SCV, players estimate the actions of the other players at the previous time
instant.

The environment controls the behavior of player i through its reflexion in the following procedure:

— The environment calculates the target SCV value Si of player i that is optimal in terms of
the former’s utility functions:

Si = argmax
Si

πj(Q(Si), Qj(Si)).

— The environment performs actions Qj that will induce player i to choose the SCV value Si

and, consequently, the optimal action Qi from the environment’s standpoint.
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The second stage of the above behavior control procedure explains the meaning of Assumption 3
in the context of the players’ dual approach to estimating the conjectural variations. The environ-
ment controls player i by performing the actions Qj determined not from the maximum of its utility

function but from the condition of inducing this player to choose Si; therefore, having predicted
the SCV values from the environment’s utility functions, player i will arrive at a contradiction.
Consequently, the player in this contradiction will favor the method for estimating the SCV val-
ues by the environment’s actions. Therefore, two alternatives are considered when estimating the
SCV values: if the players’ actions are consistent with their utility functions, the other players will
estimate the optimal SCV values; if the SCV values found by the players’ actions do not coincide
with the SCV values based on the utility functions, the first estimation method as more realistic
will be given priority.

4. METHODS FOR CALCULATING OPTIMAL CONTROL

The behavioral control of player i is based on the dependence of each player’s utility function on
the SCV values of all players, see system (4). Therefore, we first derive a formula for the maximum
of the environment’s utility function depending on the SCV vector of all players.

Proposition 1. The maximum value of the environment’s utility function is given by

π∗
j (S

r) = P [Q∗(Sr)]Q∗
j(S

r)−
Q∗

j (S
r)∫

0

[
P (Q∗) + (1 + Sr

j )Q
∗
jP

′
Q

]
dQj + Cj(0), (6)

where Sr = {Sr
k, k ∈ N} denotes the SCV vector.

Proof of Proposition 1. Let us express the marginal cost from equation (4), written for the
environment:

C ′
jQj

= P (Q∗) + (1 + Sr
j )Q

∗
jP

′
Q.

Integration over Qj yields

Cj(Q
∗
j ) =

Q∗
j∫

0

C ′
jQj

dQj +Cj(0) =

Q∗
j∫

0

[
P (Q∗) + (1 + Sr

j )Q
∗
jP

′
Q

]
dQj + Cj(0);

after substitution into the environment’s utility function, we obtain

π∗
j =P (Q∗)Q∗

j − Cj(Q
∗
j ) =P (Q∗)Q∗

j −
Q∗

j∫
0

[
P (Q∗)+(1+Sr

j )Q
∗
jP

′
Q

]
dQj+Cj(0),

where Cj(0) is fixed costs. Note that in this formula, the equilibrium action of player i, Q∗
j , the

equilibrium price P (Q∗), and the equilibrium aggregate action Q∗ are all functions of the SCV
Sr = {Sr

i , i ∈ N}. Thus, the maximum utility of the environment also depends on this vector,
which finally implies (6). �

Let us express the SCV of player i that is optimal in terms of the environment’s utility criterion:

Si = argmax
Si

π∗
j (S

r).

Proposition 2. The optimal SCV value Si of the controlled player, in terms of the environment’s
utility function, is calculated from the equation

2(1 + Sr
j )Q

∗
jQ

∗′
jSi

P ′
Q +

(
(1 + Sr

j )P
′′
QSi

+ P ′
Q

∂Sr
j

∂Si

)
Q∗2

j = 0 (7)
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under the condition

2
∂Sr

j

∂Si
Q∗′

jSi
+ (1 + Sr

j )Q
∗′
jSi

< 0, (7a)

in the case of a weak impact of the SCV change on the equilibrium shift and a relatively small value
of the second derivative of the environment’s SCV with respect to the player’s SCV compared to the
first derivative.

Proof of Proposition 2.

With the Leibniz integral rule (differentiation under the integral sign) applied to the second
term in (6), where the integration limits are functions of the parameter Si, we write the necessary
first-order maximum condition for the function (6):

π∗′
jSi

=P ′
Si
Q∗

j +PQ∗′
jSi

−
{[

P+(1+Sr
j )Q

∗
jP

′
Q

]
Q∗′

jSi
+

Q∗
j∫

0

[
P (Q∗)+ (1+Sr

j )Q
∗
jP

′
Q

]′
Si

dQj

}
= 0. (7b)

The integral in this equation can be transformed as follows:

I =

Q∗
j∫

0

[
P + (1 + Sr

j )Q
∗
jP

′
Q

]′
Si

dQj =

Q∗
j∫

0

[
P ′
Si

+ (1 + Sr
j )(Q

∗′
jSi

P ′
Q +Q∗

jP
′′
QSi

) +Q∗
jP

′
Q

∂Sr
j

∂Si

]
dQj .

In the integrand, the parameters Q∗
j , Q

∗, Q∗′
jSi

, P ′
Si
(Q∗), and P ′

Q(Q
∗) characterize the equilibrium

of all players, therefore being independent of the action Qj of player j; the parameter Sr
j and

hence
∂Sr

j

∂Si
weakly depend on the action Qj (see the proof in [7]). Therefore, the following variables

are considered to be independent of Qj:

Q∗
j , Q

∗, P ′
Si
, P ′

Q,
∂Sr

j

∂Si
, Q∗′

jSi
, Sr

j .

In this case, the integral becomes

I = (P ′
Si

+ (1 + Sr
j )Q

∗′
jSi

P ′
Q)Q

∗
j +

(
(1 + Sr

j )P
′′
QSi

+ P ′
Q

∂Sr
j

∂Si

)
Q∗2

j .

Substituting it into (7a) gives the expression

π∗′
jSi

= P ′
Si
Q∗

j + PQ∗′
jSi

−
[
P + (1 + Sr

j )Q
∗
jP

′
Q

]
Q∗′

jSi
− (P ′

Si
+ (1 + Sr

j )Q
∗′
jSi

P ′
Q)Q

∗
j

−
(
(1 + Sr

j )P
′′
QSi

+ P ′
Q

∂Sr
j

∂Si

)
Q∗2

j = −2(1 + Sr
j )Q

∗
jQ

∗′
jSi

P ′
Q −

(
(1 + Sr

j )P
′′
QSi

+ P ′
Q

∂Sr
j

∂Si

)
Q∗2

j .

Then equation (7b), used to calculate the optimal SCV value of player i in terms of the envi-
ronment’s utility criterion, takes the form (7).

The second-order maximum condition for the function (6) is given by

π∗′′
jSiSi

=−
{
2
∂Sr

j

∂Si
Q∗

jQ
∗′
jSi

P ′
Q + 2(1 + Sr

j )
[
Q∗

jQ
∗′′
jSiSi

P ′
Q +Q∗

j(Q
∗′′
jSiSi

P ′
Q +Q∗′

jSi
P ′′
QSi

)
]

+
∂Sr

j

∂Si
P ′′
QSi

Q∗2
j + (1 + Sr

j )(P
′′′
QSiSi

Q∗2
j + 2Q∗

jQ
∗′
jSi

P ′′
QSi

)

+ P ′′
QSi

∂Sr
j

∂Si
Q∗2

j + P ′
Q

(
∂2Sr

j

∂S2
i

Q∗2
j + 2Q∗

jQ
∗′
jSi

∂Sr
j

∂Si

)}
< 0.
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After straightforward transformations, we obtain

∂Sr
j

∂Si
Q∗

j (2P
′′
QSi

Q∗
j + 4Q∗′

jSi
P ′
Q)

+ (1 + Sr
j )

(
2(Q∗′

jSi
)2P ′

Q + 2Q∗
jQ

∗′′
jSiSi

P ′
Q + P ′′′

QSiSi
Q∗2

j + 4Q∗
jQ

∗′
jSi

P ′′
QSi

)
+ P ′

Q

∂2Sr
j

∂S2
i

Q∗2
j > 0.

Due to the assumption of a weak influence of the SCV change on the equilibrium shift,

P ′′
QSi

= 0, P ′′′
QSiSi

= 0, Q∗′′
jSiSi

= 0.

Due to the assumption of a small value of the second derivative of the environment’s SCV with
respect to the player’s SCV compared to the first derivative,∣∣∣∣∣∂

2Sr
j

∂S2
i

∣∣∣∣∣ �
∣∣∣∣∣∂S

r
j

∂Si

∣∣∣∣∣ ⇒ ∂2Sr
j

∂S2
i

≈ 0.

Under these assumptions, the above condition becomes

4
∂Sr

j

∂Si
Q∗

jQ
∗′
jSi

P ′
Q + 2(1 + Sr

j )(Q
∗′
jSi

)2P ′
Q > 0.

Since P ′
Q < 0 by the inverse demand function property and Q∗′

jSi
> 0 by the Stackelberg lead-

ership property, we finally arrive at a sufficient maximum condition for the solution (7) in the
form (7a). �

Let us present a methodology for calculating the derivatives Q∗′
jSi

in equation (7).

Proposition 3. The derivatives Q∗′
jSi

are the roots of the following system of linear equations:∑
k∈N

ajkQ
∗′
kSi

= bj , j ∈ N, (8)

where bj = −
(
∂Sr

j

∂Si
Q∗

jP
′
Q + (1 + Sr

j )Q
∗
jP

′′
QSi

C ′′
jQjSi

)
,

ajk =

⎧⎨⎩γjk + P ′
Q for j �= k

γjk + P ′
Q + (1 + Sr

j )P
′
Q for j = k,

γjk = P ′
Qk

(Q∗) + (1 + Sr
j )

{
Q∗

jP
′′
QQk

+ P ′
QQ

′
jQjQk

}
− C ′′

jQjQk
.

Proof of Proposition 3.

Assuming that the optimal actions of all environment players (system (4)) depend on Si, we
consider the n implicit functions

Fj(Q
∗, Si) = P (Q∗) + (1 + Sr

j )Q
∗
jP

′
Q − C ′

jQj
= 0, j ∈ N.

In this case, the derivatives Q∗′
jSi

of the implicit functions with several independent variables are
calculated from the following system [12]:

∑
k∈N

∂Fj

∂Qk

∂Qk

∂Si
+

∂Fj

∂Si
= 0, j ∈ N, (8a)
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where
∂Fj

∂Qk
= P ′

Q(Q
∗) + (1 + Sr

j )
{
Q∗

jP
′′
QQk

+ P ′
QQ

∗′
jQk

}
− C ′′

jQjQk
= γjk,

∂Fj

∂Si
= P ′

Q(Q
∗)Q∗′

Si
+

∂Sr
j

∂Si
Q∗

jP
′
Q

+ (1 + Sr
j )

{
Q∗

jP
′′
QSi

+ P ′
QQ

∗′
jSi

}
− CjQjSi

, Q∗′
Si

=
∑
k∈N

Q∗′
Si
.

Here, γjk stands for the component without an explicit dependence of the desired parameters Q∗′
jSi

,

further denoted by xj = Q∗′
jSi

. In this case, system (8a) has the form

∑
k∈N

γjkxk + P ′
Q

∑
k∈N

xk + (1 + Sr
j )P

′
Qxj +

∂Sr
j

∂Si
Q∗

jP
′
Q + (1 + Sr

j )Q
∗
jP

′′
QSi

−C ′′
jQjSi

= 0.

With bj = −
(
∂Sr

j

∂Si
Q∗

jP
′
Q + (1 + Sr

j )Q
∗
jP

′′
QSi

− C ′′
jQjSi

)
and

ajk =

⎧⎨⎩γjk + P ′
Q for j �= k

γjk + P ′
Q + (1 + Sr

j )P
′
Q for j = k,

we write the following system of linear algebraic equations for the unknowns xk:
∑

k∈N ajkxk = bj ,
j ∈ N , which matches (9). �

System (9) allows determining the derivatives Q∗′
jSi

as functions of the SCV values Sr
j of all

players, including the desired value Si. Thus, we have provided a method for calculating the target
SCV value of the controlled player: solve equation (7) considering the derivatives Q∗′

jSi
expressed

through Si from the solution of system (8).

5. A MECHANISM FOR CALCULATING OPTIMAL CONTROL

Consider a possible method for the environment to induce the controlled player to choose the
target SCV value Si. As an illustration, we will interpret the considerations by the example of
duopoly. Let us start with the description of the classical principle of Stackelberg leader emergence
in the game of initially equal participants (Fig. 2), i.e., from the situation of Cournot responses.
(Here, the equilibrium and Cournot responses are indicated by the symbol K.) As is known [13],
the optimal reaction functions of the players in the linear Cournot duopoly model have the form

Q1 =
α1 −Q2

2
, Q2 =

α2 −Q1

2
,

where α1 =
a−Bi

b , with a and b representing the maximum price and the rate of price reduction in
the inverse demand function, respectively, and Bi specifying the marginal cost of player i. However,
if the reaction functions were unknown to the players, they could reconstruct these functions from
observations of each other’s actions. When treated as a potential leader, the first player observes
in the game dynamics the response of the second player: the second player takes the action Qt

2 in

response to the action M1 and the action Q
(t+1)
2 in response to the first player’s reciprocal action Qt

1.
Based on these observations, the first player (with the reaction function RK

1 ) determines the second
player’s reaction function RK

2 and calculates from it the conjectural variation (equal to the SCV in
the duopoly) as follows:

S1 = Q′
2Q1

= −1

2
.
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Q2

R1
L

R1
K

M2

Q2
t+1

Q2
t

K
L

Q2
t+1 Q2

t M1 Q1

Fig. 2. The emergence of a Stackelberg leader: an illustration.

As a result, the reaction function of the first player is transformed to

Q1 =
α1 −Q2

2 + S2
=

α1 −Q2

2− 1
2

;

and this player becomes a Stackelberg leader (in Fig. 2, its response and the corresponding equi-
librium are indicated by the symbol L). In other words, observing the response Q2 =

α2−Q1

2+0 of
the second player, the first player has revised its SCV: the SCV S2 = 0 of the second player has
induced the first player to set the SCV value S1 = −1

2 .

Extending this procedure to multilevel leadership, we can formulate the following law: for a
certain player to change its conjectural variation to some given value corresponding to a definite-
level Stackelberg leader, this player must observe another player’s action corresponding to the
response of a previous-level Stackelberg leader. Consequently, the other player must create the
so-called phantom agent acting not according to its true reaction function, so this response will be
called phantom and denoted by the symbol f . Formally, this means that to induce player i to set
the SCV value Si, the environment must act according to the phantom reaction function

Qf
j =

αj −Qi

2 + Sf
j

under the condition

Si = Qf ′
jQi

= − 1

2 + Sf
j

= Si.
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Q2

M2

Q2
(t+1)

Q2
0

R1
f

0

Et

Et+1
Et+2

R2
0

_
R2

Q1
f(t) Q1

0 Q1
(t+2) M1 Q1

Fig. 3. The informational control process: an illustration.

Hence, the SCV of the environment for this action is given by

Sf
j = − 1

Si
− 2.

This general principle was proved earlier [7] as formula (5). Based on the latter, we provide
a method for calculating the phantom response in the general case of nonlinear cost functions,
when the reaction functions cannot be expressed explicitly. Let us summarize the considerations
as follows.

Proposition 4. The environment’s phantom reaction function inducing the controlled player to
set the target SCV value Si corresponds to the environment’s SCV value Sf

j calculated by solving
the equation

Si =

⎛⎜⎜⎜⎜⎝ 1∑
j∈N\i

1

uj − Sf
j + 1

− 1

⎞⎟⎟⎟⎟⎠
−1

. (9)

Based on this principle, we describe the informational control process in the above duopoly
example, assuming that the target SCV value of the controlled (second) player is S2 = −3

4 . In other
words, the first player strives to make the second player’s response match a third-level Stackelberg
leader. (Recall that in the linear duopoly, the leaders of the first, second, and third levels have the
SCV values −1

2 ,−
2
3 , and −3

4 , respectively.) We assign the number “0” to the initial equilibrium
state, i.e., the equilibrium actions are Q0

1 and Q0
2, the SCV values of the players are S0

1 and S0
2 ,

and the reaction functions are R0
1 and R0

2. The control process is illustrated in Fig. 3.
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At the time instant t, the first player calculates its action using the phantom reaction function Rf
1

of the second-level leader: Q
f(t)
1 =

α1−Q0
2

2− 2
3

. Therefore, the game state at this instant (the point Et)

is described by the action vector (Q
f(t)
1 , Q0

2).

At the time instant t+ 1, the second player calculates S2 = −3
4 using this action and passes to

the target reaction function R2, given by the equation Qt+1
2 =

α2−Q
f(t)
1

2− 3
4

. With this reaction function,

it responds to the action Q
f(t)
1 by the action Qt+1

2 =
α2−Q

f(t)
1

2− 3
4

. At this time instant, the game state

is denoted by the point Et+1.

At the time instant t+ 2, the first player performs an action according to its true reaction

function Qt+2
1 =

α1−Qt+1
2

2+S0
2

(maximizes its utility for the initial equilibrium). For the combination

(Qt+2
1 , Qt+1

2 ), the game state is denoted by the point Et+2.

At the subsequent time instants of the game, the initial equilibrium is restored according to the
above procedure (see Fig. 2). With this procedure, the first player gains an additional utility at
the time instants t+ 1 and t+ 2 since the second player performs actions according to the SCV
target value S2.

The game state returns to the initial equilibrium in an infinite number of steps. Therefore, the
Principal’s control efficiency can be assessed by the following condition:

∞∑
τ=t

π∗(τ)e−ρτ − π∗(0)
∞∑
τ=t

e−ρτ � 0,

where π∗(0) is the Principal’s maximum utility at the initial equilibrium; π∗(τ) is the Principal’s
maximum utility at a time instant τ ; finally, ρ is the discount rate.

6. CONCLUSIONS

This paper has developed an informational control method for the actions of a given player
in an oligopoly game model: other players perform a control action inducing this player to make
an optimal response from the environment’s standpoint. The foundations of this informational
control are, first, the dependence of players’ actions on their conjectures regarding the expected
actions of counterparties and, second, the a priori unawareness of players regarding each other’s
conjectures due to the dual nature of their conjectural variations. On the one hand, the variations
are based on the analysis of the utility functions of the environment; on the other, a player cannot
ignore the nature of the responses of its environment. Therefore, the following hypothesis has been
adopted above: in the case of contradiction between these two approaches, the players estimate
the conjectural variations by each other’s actions, which are more reliable information. Under this
hypothesis, without changing its conjectural variations, the environment can perform an action as
if on behalf of a phantom player that induces the controlled player to respond in a way favorable to
the environment, and the latter interprets this action as a signal of a change in the environment’s
true reaction and performs the desired action.

The main results of this study can be summarized as follows. A hierarchical game model of
players’ interactions in an oligopoly has been presented, where the environment is treated as the
Principal and some player as a controlled object. An explicit expression has been derived for the
maximum of the environment’s utility function depending on the SCV vector of all players; this
expression allows finding the controlled player’s SCV value optimizing the environment’s utility
function. A methodology for calculating the target SCV value of the controlled player from the
environment’s standpoint has been defined. An iterative procedure has been developed to induce
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the controlled player to choose a reaction function corresponding to the target SCV value; as a
result, the environment maximizes its utility.

The optimal control problem has been formulated for an n-player game with general utility
functions. Therefore, it is impossible to obtain explicit solutions to analyze the game results in the
developed techniques and procedures. Hence, the next stage of research is to apply these general
tools to particular utility functions and carry out numerical experiments.
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